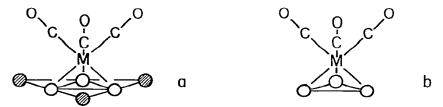
Journal of Organometallic Chemistry, 205 (1981) C31—C32 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

SYNTHESIS AND CHARACTERIZATION OF THE $[(OC)_3 M(P_3 O_9)]^{2-}$ ANIONS, M = Re AND Mn


CHARLES J. BESECKER and WALTER G. KLEMPERER*

Department of Chemistry, Columbia University, New York, New York 10027 (U.S.A.) (Received October 10th, 1980)

Summary

Reaction of [(OC)₃ M(NCCH₃)₃] (PF₆) (M = Re or Mn) with [(n-C₄ H₉)₄ N]₃ (P₃ O₉) in 1,2-C₂ H₄ Cl₂ yields [(n-C₄ H₉)₄ N]₂ [(OC)₃ M(P₃ O₉)], shown to contain an anion whose structure is related to the P₄ O₁₀ structure by replacement of an OP³⁺ unit by (OC)₃ M⁺.

The $[(OC)_3 M(Nb_2 W_4 O_{19})]^{3-}$ anions [1], M = Re and Mn, contain metal tricarbonyl groups bonded to a triangle of oxygen atoms occupying the center of a rigid, close-packed layer of six oxygens (structure a). Since each of the peripheral oxygens in this layer, hatched in a, is in close proximity to a carbonyl group, the set of peripheral oxygens could play a key steric role in determining

the chemical reactivity of the metal tricarbonyl groups. A metal tricarbonyl binding site lacking these three peripheral oxygens (structure b) would provide an opportunity for investigating this effect through comparative reactivity studies. The $[(OC)_3 M(P_3 O_9)]^{2-}$ anions reported here, M = Re and Mn, utilize the trimetaphosphate ligand to create such a binding site. These complexes are, to the best of our knowledge, the first isolable metal trimetaphosphate complexes to be reported in the chemical literature.

^{*}Camille and Henry Dreyfus Teacher-Scholar.

Addition of $[(n-C_4H_9)_4N]_3(P_3O_9)$ [2], prepared from aqueous Na₃(P₃O₉) using an ion exchange resin, to one equivalent of $[(OC)_3M(NCCH_3)_3]$ (PF₆) [3], M = Re or Mn, in 1,2-C₂ H₄ Cl₂ under N₂ at 79°C followed by precipitation with ether and recrystallization by cooling a hot saturated THF/CH₃ C₆ H₅ solution to -30°C yields microcrystalline $[(n-C_4H_9)_4N]_2[(OC)_3M(P_3O_9)]$, M = Re (1) or Mn (2). The Mn compound is light-sensitive and its preparation must be carried out in darkness. Compounds 1 and 2 are formulated as indicated on the basis of satisfactory C, H, N, P and M analyses and conductivity measurements in CH₃ CN which characterize then as 2/1 electrolytes. The structure shown in Fig. 1 is consistent with IR and ³¹P NMR spectroscopic

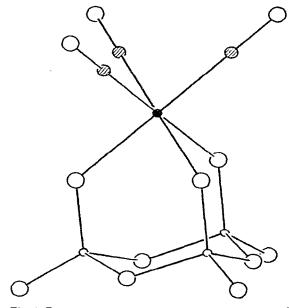


Fig. 1. Proposed C_{3U} structure of the $[(OC)_3(P_3O_9)]^{2-}$ anions. Large open circles represent oxygen atoms, small open circles represent phosphorus atoms, hatched circles represent carbon atoms, and the filled circle represents the M atom.

data obtained from CH₃ CN solutions. Infrared absorptions in the CO stretching region (1: $2018 \, \mathrm{cm^{-1}}$ (s), $1885 \, \mathrm{cm^{-1}}$ (s, br); 2: $2034 \, \mathrm{cm^{-1}}$ (s), $1913 \, \mathrm{cm^{-1}}$ (s, br) are in accord with a C_{3v} metal tricarbonyl unit [4]. ³¹P NMR spectra, which in each case display a single resonance (for $0.1 \, M$ solutions, 11.1 (1) and 9.8 (2) ppm upfield from $85\% \, \mathrm{H_3} \, \mathrm{PO_4}$), similarly support a C_{3v} structure.

We thank the National Science Foundation for support of this research.

References

¹ C.J. Besecker and W.G. Klemperer, J. Amer. Chem. Soc., in press.

² T. Glonek, R.A. Kleps, E.J. Griffith, and T.C. Myers, Phosphorous, 5 (1975) 157.

³ D.A. Edwards and J. Marshalsea, J. Organometal. Chem., 131 (1977) 73.

C.S. Kraihanzel and P.K. Maples, J. Organometal. Chem., 117 (1976) 159.